Organic and Biochemistry

Chapters 19 and 20

Carbon always has 4 bonds

single bonds

double bond

triple bond

never quadruple bonds

Copyright © 2005 Pearson Prentice Hall, Inc.

n	Name	Molecular formula $C_n H_{2n+2}$	Structural formula	Condensed structural formula
1	methane	CH ₄	H H-C-H H	CH ₄
2	ethane	C_2H_6	$ \begin{array}{ccc} H & H \\ I & I \\ H - C - C - H \\ I & I \\ H & H \end{array} $	CH ₃ CH ₃
3	propane	C ₃ H ₈	$ \begin{array}{ccccc} H & H & H \\ H & - C & - C & - C & - H \\ H & H & H & H \end{array} $	CH ₃ CH ₂ CH ₃
4	n-butane	C_4H_{10}	$\begin{array}{ccccc} H & H & H & H \\ I & I & I & I \\ H - C - C - C - C - C - H \\ I & I & I \\ H & H & H \end{array}$	CH ₃ CH ₂ CH ₂ CH ₃
5	n-pentane	C ₅ H ₁₂	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃
6	n-hexane	C ₆ H ₁₄	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃
7	n-heptane	C ₇ H ₁₆	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃
8	n-octane	C ₈ H ₁₈	H H H H H H H H-C-C-C-C-C-C-C-C-H H H H H H H H	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃
9	n-nonane	C_9H_{20}	H H H H H H H H H H-C-C-C-C-C-C-C-C-C-H H H H H H H H H H	CH ₃ CH ₂ CH ₃
10	n-decane	C ₁₀ H ₂₂	Н Н Н Н Н Н Н Н Н Н Н 	CH ₃ CH ₂

Representing Organic Compounds

- Molecular Formula -- C_4H_{10}
- Complete structural formula –

 $\begin{array}{ccccccccccc} H & H & H & H & H & H & H & H \\ H & -C & -C & -C & -C & -H & or & H & -C & -C & -H \\ H & H & H & H & H & H & H \end{array}$

• Line formula -

Isomers - Compounds that have the same molecular formula but different structural formulas.

Isomers of Hexane

Nomenclature – alkanes

• Find the longest chain of carbon atoms --- this is the base name of the alkane.

• Alkyl groups branch off of the main chain

• Main chain is numbered to show where alkyl groups are attached.

Name this compound

CH₃CH₂CHCH₂CH₂CH₂CH₃ CH_2 CH_3

Longest chain highlighted

CH₃CH₂CH₂CH₂CH₂CH₂CH₃

ĊH₂ | CH₃

3-ethyl hexane

4 2 3 5 CH₃CH₂CHCH₂CH₂CH₂CH₃ CH_2 CH_3

CH₃CHCH₂CHCH₂CH₂CH₂CH₃ CH_3 CH_2CH_3 Methyl Ethyl

4-ethyl-2-methyl heptane

Cycloalkanes

Physiological Properties of Alkanes

- Methane (CH₄) is physiologically inert.
- Cyclopropane (C_3H_6) is a safe, effective, and fast acting anesthetic.
- Pyrethrins are cyclopropane derivatives found in the pyrethrum daisy which have insecticidal activity.
 Pyrethrins are frequently used in flea sprays.
- Liquid alkanes (gasoline) dissolve and wash away oils.
- Solid alkanes are applies to the skin as emollients (skin softeners).

Properties of Alkanes

- Methane (CH₄), propane (C₃H₈), and butane(C₄H₁₀) are all used as fuels.
- Cyclopropane (C₃H₆) is a safe, effective, and fast acting anesthetic.
- Pyrethrins are cyclopropane derivatives found in the pyrethrum daisy which have insecticidal activity. Pyrethrins are frequently used in flea sprays.

© 2011 Pearson Education, Inc.

Properties of Alkanes

 Cyclopropane (C₃H₆) is a safe, effective, and fast acting anesthetic.

Properties of Alkanes

- Liquid alkanes (gasoline) dissolve and wash away oils.
- Solid alkanes make up the waxy coating on fruits and vegetables. They are also applied to the skin as emollients (skin softeners).

© 2011 Pearson Education, Inc.

Unsaturated Hydrocarbons

Alkene

Alkyne

© 2011 Pearson Education, Inc.

Ethene used to ripen fruit.

© 2011 Pearson Education, Inc

Alkenes – double bonds

* These alkenes have one or more isomers depending on the position of the double bond. The isomers here have the double bond in the #1 position, meaning the first carbon-carbon bond of the chain.

Alkynes – triple bonds

* These alkynes have one or more isomers depending on the position of the triple bond. The isomers shown here have the triple bond in the #1 position, meaning the first carbon-carbon bond in the chain.

Functional Groups in Organic Compounds

- Hydrocarbons
- Alcohols and Ethers
- Aldehydes and Ketones
- Carboxylic acids and Esters
- Amines and Amides
- Amino Acids

Alcohols and Ethers

Alcohol
 General formula R-OH
 Methanol CH₃OH

Ethanol CH_3CH_2OH

© 2011 Pearson Education, Inc.

•Ether

•General formula R-O-R

Dimethyl ether CH_3OCH_3 Diethyl ether $CH_3CH_2OCH_2CH_3$

Ether

2011 Pearson Education, Inc

Aldehydes and Ketones

CH,OH H - C - OHC = Oно-с-н но-с-н Н-С-ОН Н-С-ОН н-с-он н-с-он CH,OH CH,OH Fructose Glucose © 2011 Pearson Education, Inc.

- Contain a carbonyl group
- Aldehydes
 - Carbonyl attached to at least 1 hydrogen

- Ketones
 - No hydrogen attached to carbonyl.

Aldehydes and Ketones

Aldehyde © 2011 Pearson Education, Inc.

© 2011 Pearson Education, Inc.

Propanone O $H_{3}-C-CH_{3}$ Butanone O $H_{3}-C-CH_{3}$ O $H_{3}-C-CH_{3}$

Carboxylic Acids and Esters

- Contain a carboxyl group
 Orginal carboxyl
- Carboxylic acid
 - Oxygen attached to H
 - 0 —Ё—О—Н
- Esters
 - Carbon (R) group attached to H

Carboxylic Acids and Esters

© 2011 Pearson Education, Inc.

© 2011 Pearson Education, Inc.

Amines and Amides

- Contain nitrogen
- Amines

- Amides
 - Carbonyl attached to a nitrogen

 $-NH_2$

Amines and Amides

Amino Acids

© 2011 Pearson Education, Inc.

Class	Functional Group	Example
Alkene	>c=c<	$H_2C = CH_2$
Alkyne	$-C \equiv C -$	HC≡CH
Alcohol	—ОН	$CH_3 - CH_2 - OH$
Ether	-0-	$CH_3 - O - CH_3$
Aldehyde	о Н Н	$CH_3 - C - H$
Ketone		$CH_3 - C - CH_3$
Carboxylic acid	о ————————————————————————————————————	$\mathbf{CH}_{3} - \mathbf{C} - \mathbf{O} - \mathbf{H}$
Ester	$\overset{\mathrm{O}}{\overset{\parallel}{=}}$ $\overset{-\mathrm{O}}{-}$ $\overset{-\mathrm{O}}{-}$	$CH_3 - C - O - CH_3$
Amine	N	$CH_3 - NH_2$
Amide	-C - N - N	$CH_3 - C - NH_2$

TABLE 8.7 Classification of Organic Compounds

© 2011 Pearson Education, Inc.

Table 19.14 Summary of Hydrocarbon Derivatives							
Family Name	General Formula	Functional Group	Example				
Organic halide	R—X	—x	CH ₃ —CH ₂ —Cl "ethyl chloride"				
Alcohol	R—OH	—ОН	CH ₃ —CH ₂ —OH "ethyl alcohol"				
Phenol	Ar—OH	—он	DH-OH				
Ether	R—O—R'	-0-	CH ₃ —O—CH ₃ "dimethyl ether"				
Amine	R—NH ₂	-NH ₂	CH ₃ —CH ₂ —NH ₂ "ethyl amine"				
Aldehyde	© ∥ R—C—H	O ∥ −C−H	O ∥ CH3—C—H "acetaldehyde"				
Ketone	$\stackrel{O}{\overset{\parallel}{\overset{\parallel}{}}}_{R-C-R'}$		O ∥ CH ₃ —C—CH ₃ "acetone"				
Carboxylic acid	© ∥ R—C—OH	0 Ш —С—ОН	O ∥ CH ₃ —C—OH "acetic acid"				
Ester	$\mathbf{R} = \mathbf{C} = \mathbf{O} = \mathbf{R}'$		$CH_3 - C - O - CH_3$ "methyl acetate"				
Amide	$\stackrel{O}{\overset{\parallel}{\overset{\parallel}{}}}_{R-C-NH_2}$	$-C$ $-NH_2$	O ∥ CH3—C—NH2 "acetamide"				

Copyright © 2004 Pearson Prentice Hall, Inc.

Copyright © 2004 Pearson Prentice Hall, Inc.

Monosaccharides - Simple carbohydrates that cannot be broken down by hydrolysis

Sugars form a ring in solution

Copyright © 2004 Pearson Prentice Hall, Inc.

Disaccharides - sugars consisting of 2 monosaccharides

Polysaccharides

Proteins – composed of amino acid chains

Major Classes of Protein

- Fibrous Proteins
 - Long rod-shaped or string-like molecules that can intertwine with each other and form strong fibers.

- Globular Proteins
 - Folded to be spherical

Primary structure

- refers to the number and sequence of amino acids in a peptide chain
- the unique sequences of each of the proteins determine their shapes and properties

Secondary structure

- Refers to the ordered arrangement of the polypeptide backbone.
- Alpha helix
- Beta sheet

Tertiary structure

 Refers to the unique 3-D shape that results from the unique folding of the secondary structure.

Copyright © 2004 Pearson Prentice Hall, Inc.

Protein Function

- Catalytic
- Structural
- Storage
- Protective
- Regulatory
- Nerve impulse transmission
- Motion
- Transport

Copyright © 2004 Pearson Prentice Hall, Inc.

Denaturation of proteins

- Denaturation is any process that results in the loss of a proteins native configuration and thus its activity.
- Denaturing agents
 - Heat and UV light
 - Organic solvents
 - Strong acids and bases
 - Detergents
 - Heavy Metals

Lipids

- Lipids are biological molecules that are insoluble in water and soluble in organic solvents.
 - Saponifiable lipids -- hydrolyzed to form carboxylic acid salts and alcohols.
 - tryglycerides
 - Nonsaponifiable lipids -- not hydrolyzed
 - Cholesterol and steroids

Lipid Function

- Energy Storage
 - -2 X the calories of carbohydrates per gram
- Important components of brain and nerve tissue
- They store and provide fat soluble vitamins

- (Vitamins A, D, E, and K)

- They serve as protective padding and insulation for vital organs.
- They are a major constituent of cell membranes.

Triglycerides

Saturated fat

Unsaturated fat

How do soaps work??

<u>Steroids</u>

Cholesterol

- most prevalent steroid
- membrane component
- combines with fatty acids and abnormal muscle tissue in atherosclerosis
- Cholesterol is precursor to other steroids including bile salts, sex hormones, vitamin D, and adrenocortaid hormones.

Nucleic acids

• Contain genetic information

Nucleotide

 A nucleotide in DNA consists of one of the 4 bases linked to a deoxyribose sugar which is linked to a phosphate:

• Adenine deoxyribonucleotide:

Copyright 2011 John Wiley & Sons, Inc

DNA

- DNA is a polymeric substance made up of thousands of units called nucleotides.
- The structure of DNA consists of two polymeric strands of nucleotides in the form of a double helix.
- The sequence of **base pairs** in the DNA is the genetic code for the individual.

RNA

- **RNA** is a single stranded polymer of nucleotides that contains ribose rather than deoxyribose and the base uracil rather than thymine.
- The main function of RNA is to direct the synthesis of proteins in the ribosomes of the cell.
- **Transcription** is the process by which DNA directs the synthesis of three types of RNA: messenger RNA, transfer RNA and ribosomal RNA

Figure 20.9

The process of cellular genetic information.

Copyright 2011 John Wiley & Sons, Inc